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We study the phase diagram of a superconducting ring threaded by an Aharonov-Bohm flux and an in-plane
magnetic Zeeman field. The simultaneous presence of both the external flux and the in-plane magnetic field
leads to the competition between the Fulde-Ferrell �FF�-like phase and the Larkin-Ovchinnikov �LO� phase.
Using the Bogoliubov-de Gennes equation, we investigate the spacial profile of the order parameter. Both the
FF-like phase and the LO phase are found to exist stably in this system. The phase boundary is determined by
comparing the free energy. The distortion of the phase diagrams due to the mesoscopic effect is also studied.
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I. INTRODUCTION

In recent years, one of the inhomogeneous superconduct-
ing states, known as Fulde-Ferrell-Larkin-Ovchinnikov
�FFLO� state, has received a lot of interest. This supercon-
ducting state with periodical spacial variation in order pa-
rameter �OP� was first proposed independently by Fulde and
Ferrell1 and by Larkin and Ovchinnikov2 in 1960s. The pos-
sible evidence of its existence has been reported in certain
unconventional superconductors3–5 and the possibility of its
realization in trapped cold atoms.5–10 In literature, the state is
collectively known as the FFLO state.11 Actually, they are
two kinds of states with slight difference: the OP of the LO
state is real and spatially inhomogeneous, which breaks the
translational symmetry, while the OP of the FF state has a
uniform magnitude, but an inhomogeneous phase similar to
that of a plane wave, breaks the time-reversal symmetry. Ac-
cording to previous studies, the FF state is usually unstable
and unfavorable in comparison with the LO state. Although
the LO to FF phase transition was predicted in Ref. 12, a
more recent study13 shows that there is no stable FF phase in
such a system and there is no LO to FF phase transition
either. The authors in Ref. 14 mention a possible FF state in
a momentum space study, but as to the best of our knowl-
edge, a realization of stable FF state in the presence of a
Zeeman field has not been reported yet in a real-space cal-
culation.

As is well known when a Zeeman field is added to a
superconductor, the LO state becomes favorable in compari-
son with the Bardeen-Cooper-Schrieffer �BCS� state, irre-
spective of the geometry of the superconductor. Meanwhile,
we notice that in a superconducting ring, which is threaded
by a magnetic flux, the Aharonov-Bohm �AB� flux breaks the
time-reversal symmetry in much the same spirit as that in the
FF phase.15 As a result the FF-like state comes out. We note
that the original FF state proposed by Fulde and Ferrell1 has
no net current, but the state in Ref. 15 has nonzero current.
We call the state induced by AB flux FF-like state to distin-
guish it from the original FF state proposed by Fulde and
Ferrell.1 An interesting question is then if we add both the
magnetic flux and an in-plane magnetic field, how will the
two phases compete with each other? Motivated by this ob-
servation, we study in this paper the interplay between this

AB flux-driven FF-like phase and the Zeeman field-induced
LO phase. It is of great interest to study the phase transitions
and phase diagram in such a system. The investigation is
carried out in a tight-binding model for a superconducting
ring pierced by an AB magnetic flux, and in the presence of
a Zeeman magnetic field. We solve self-consistently the
Bogliubov-de Gennes �BdG� equation for the superconduct-
ing OP and determine the phase diagram by comparing the
total energy. We find that for this system, there are four dif-
ferent phases when we vary the two parameters, magnetic
flux � and the Zeeman field h. More interestingly, we also
study the mescscopic effect.

The paper is organized as follows: in Sec. II, we introduce
the tight-binding model and present the mean-field treatment.
In Sec. III, we numerically carry out the calculation of su-
perconducting OP as a function of the magnetic flux and
Zeeman field, and determine the phase diagram by compar-
ing the free energies. Section IV is the discussion and con-
clusion.

II. MODEL AND MEAN-FIELD TREATMENT

We consider a one-dimensional superconducting ring
threaded by an external magnetic flux � �see Fig. 1�. Mean-
while, there is an in-plane magnetic field B, which generates

Φ

B

FIG. 1. �Color online� Schematic illustration of the setup. A
superconducting ring is threaded by an external magnetic flux, de-
noted by �. A magnetic field B is applied in the plane of the ring.
The ring is connected to the ground to ensure that the chemical
potential is fixed, but the electron number may fluctuate.
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the Zeeman spliting and gives rise to the inhomogeneous
pairing. The system is described by the following Hamil-
tonian:

H = − �
i,j,�

t̃i jci�
† cj� + g�BB�

i,�
�ci�

† ci�

− V�
i

ni↑ni↓ − ��
i,�

ci�
† ci�. �1�

Here t̃i j = tije
i2��/N�0, where tij is the bare hopping coeffi-

cient, �0=hc /e is the normal-state flux quantum, and N is
number of lattice sites for the ring. ci�

† �ci�� is the creation
�annihilation� operator on the ith lattice site with spin
�= �1 for spin-up and spin-down electrons, arising from the
interaction between the magnetic field and the spin of the
electrons; ni,�=ci�

† ci� is the particle number on the ith site
with spin �; �B is the Bohr magneton; B is the strength of
the in-plane magnetic field; V is the strength of the on-site
pairing interaction; and � is the chemical potential. For sim-
plicity, we define h=g�BB as the strength of the Zeeman
field; g is equal to 2. In the present work, we take tij to be t
between nearest-neighboring sites and zero otherwise.
Within the mean-field approximation, the Hamiltonian �1� is
reduced to

H = − �
i,j,�

t̃i jci�
† cj� + h�

i,�
�ci�

† ci� − ��
i,�

ci�
† ci�

+ V�
i

��ici↑
† ci↓

† + H.c.� + �
i

��i�2

V
, �2�

where �i�V�ci↑ci↓� is the pair potential. To diagonalize this
Hamiltonian, we employ the following Bogoliubov transfor-
mation:

ci� = �
�

�ui�
� 	� − ��vi�

� ��	�
†	 ,

ci�
† = �

�

��ui�
� ��	�

† − �vi�
� 	�	 , �3�

corresponding to the eigenvalues E�
�, where 	� and 	�

† are the
quasiparticle operators. The coefficients �ui�

� ,vi�
� � satisfy the

BdG equation16

�
j

 Hij� �i
ij

��i��
ij − H̄ij�
�
uj�

�

v j�̄
� � = E�

�
ui�
�

vi�̄
� � , �4�

where Hij�=−t̃i j −�
ij +�h
ij and H̄ij�= �−t̃i j −�
ij	�+ �̄h�
ij.
The self-consistent equation of the pair potential

�i =
V

2 �
�=1

2N

ui↑
� �vi↓

� ��tanh
E�

↑

2T
�5�

is solved by iteration. Here T is the temperature �the Boltz-
mann constant kB=1 has been taken�. Notice that the quasi-
particle energy is measured with respect to the chemical po-
tential.

III. NUMERICAL RESULTS

In our numerical calculation, we take the energy unit
t=1, and the chemical potential �=−0.5, the interaction
strength V=2, and the ring size N=50. Though the system
size is far from the thermodynamic limit, it already gives the
same phase boundary as that of infinite N. The OP structure
depends not only on the Zeeman field h but also the magnetic
flux �. We note15,17 that all physical quantities have already
been a function of � with a period of �0 even in the normal
state. Therefore, it is sufficient for us to consider the mag-
netic flux in the range �� �0,�0	. In the absence of the
magnetic flux �=0, the BCS OP �=0.351 for h=0 and the
LO state is stable for hc1�h�hc2 with hc1=0.23 and
hc2=1.56. The system becomes normal ��=0� for h�hc2. In
the presence of the magnetic flux, the magnetic flux can in-
duce a change in the structure of the BCS state in an s-wave
superconductor, namely, a crossover from the BCS state in
the absence of a magnetic flux to a FF-like state with a mag-
netic flux when the Zeeman field is low h�hc1. When the
Zeeman field increases, the LO becomes favorable and both
BCS and FF-like states give in. If we continue to increase the
Zeeman field, the amplitude of the pairing potential of the
LO phase will be suppressed by the Zeeman field until it
disappears finally, and the system enters the normal state. To
better demonstrate our ideas, we illustrate the OP of normal
state, BCS state, LO state, and FF-like state in Fig. 2. It can
be seen that the OP of the LO and BCS states have only real
component. Moreover, the OP of LO state is sinusoidal. The
OP of FF-like sate has both real and imaginary components,
and both of them are sinusoidal. We would like to mention
that in a recent publication,5 solitonlike solutions of the OP
are obtained in annular disks, which means the OP contains
higher order Fourier components. But in our current calcula-
tions, there is no higher order Fourier components. Our result
is in agreement with the original work of Larkin and
Ovchinnikov.2 In the following, we will numerically con-
struct the phase diagrams.

A. Phase boundary in h-� plane

We first focus on the low-temperature case =1 /T=200
�corresponding to T=0.005�. In the absence of the magnetic
flux, there are three different phases: BCS, LO, and normal.
In the presence of the magnetic flux, there are also three
phases, FF-like, LO, and normal states. In the following, we
study the phase transitions and the phase boundaries for fixed
temperature when varying h and �.

In order to check if the FF-like state becomes the ground
state, we assign a periodic phase to the OP at each site as an
initial condition. Similarly, we assign a constant phase to see
if BCS state becomes the ground state. For a set of fixed
parameters �h ,� ,N ,T�, different stable solutions �with dif-
ferent OP textures� could be obtained from different initial
configurations. For example, one may find both stable
LO-type OP and FF-type OP for the same set of parameters
�N=50, =200, �=0.25�0 , h=0.25�. Even there are
more than one stable LO-type solutions for the same set of
parameters, which means different net momentum of the
Cooper pair. To distinguish one state from other competing
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states �including BCS state and FF-like state�, we choose the
energetically most favored one by comparing their free ener-
gies. For the model in Eq. �1�, the free energy is given by

F = −
1


�

�

ln�1 + e−E�
↑
� + �

i

��i�2

V
− �

i

�� + h� . �6�

Here, we just compare the summation of the first two terms,
because the third term is a constant for all solutions of dif-
ferent phases. In the following we determine the phase
boundary between FF-like state, LO state, and normal state.

1. First-order transition between the FF-like and LO
phases

When determining the pair potential self-consistently by
iteration, we find that in certain range of the strength of the
in-plane Zeeman field h, different initial configurations of the
pair potential lead to different stable solutions. In another
word, there are more than one stable solutions through itera-
tion. For example, when we fix �=�0 /4, and vary the mag-
netic field in the range 0.08�h�0.29, stable solutions of
both the FF type and the LO type can be arrived at through
iteration. The free energies of these two types of stable so-
lutions are listed in Table I. It can be seen that the LO state
becomes energetically favorable when the magnetic field is
equal to or greater than hc1=0.21. In addition, the free energy
at hc1 is continuous, but its first-order derivative is not con-
tinuous. Hence, we conclude that for a fixed magnetic flux
�=�0 /4, there is a first-order phase transition between the

FF-like and LO states at hc1. Similarly, we fix magnetic flux
� at different values and we can find the threshold value of
h at which the system changes from the FF-like state to the
LO state or vise versa. Thus for a fixed temperature =200
and fixed system size N=50, the phase transition line be-
tween FF-like and LO states is determined by comparing the
free energy of the FF-like phase and the LO phase, and we
plot it in Fig. 3. To ensure that the phase boundary given by
N=50 is close to that of the thermodynamic limit, we change
the system size to N=200, and we find the phase boundary
does not change. For N=50 and 200, the magnitude of the
OP �i in BCS phase is the same. Hence the result based on
N=50 can be regarded as in thermodynamic limit. It can be
seen that the first-order transition line is not parallel to the �
axis, so we can tune the flux to make the system change from
the LO phase to the FF-like phase or vise versa keeping the
Zeeman field constant. We call this phase transition AB-
effect-induced phase transition. We can also see that the
phase boundary between the LO and FF-like states is sym-
metric around �=�0 /4, and the period of FF-like phase is
�0 /2. Specifically, the LO state exists in the range
�0.23,1.56	, �0.21,1.52	, and �0.23,1.51	 for �=0, �0 /4, and
�0 /2, respectively.

2. Second-order transition between the LO- and normal-state
phases

If we continue to increase the in-plane magnetic field
above the value h=0.29 for � fixed at �0 /4, all initial con-
figurations of the pair potential will lead to the LO state, or

TABLE I. Free energies �up to a constant −�i=1
N ��+h�	 for stable solutions of FF-like state and LO state.

Here the ring size is N=50, the magnetic flux �=�0 /4, and the temperature =200. It can be seen that there
is a first-order phase transition from the FF-like state to LO state when the in-plane magnetic field is tune
across h=0.21.

h=0.20 h=0.21 h=0.22 h=0.23 h=0.24 h=0.25

FF −56.1487 −55.6487 −55.1487 −54.6487 −54.1487 −53.6487

LO −56.1019 −55.6319 −55.1619 −54.6919 −54.2219 −53.7519
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FIG. 2. �Color online� �a� Order parameters of BCS state, normal state, and LO state. Here we choose the ring size N=50, the temperature
=200, the magnetic flux �T=0, and the Zeeman field for BCS, LO, and normal states are B=0.01, 0.35, and 1.58, respectively. �b� The real
and imaginary parts of the order parameter of FF-like state. They are represented by joined dots and unjoined dots, respectively. The
magnetic flux and the Zeeman field for FF-like state is chosen to be �T=0.25�0 and B=0.01.
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only the LO state becomes stable. Meanwhile the amplitude
of the pair potential decreases and the period of the modula-
tion of the pair potential is shortened continuously. Further
increase in the Zeeman field leads to the reduction in the pair
potential until it vanishes gradually. When the magnetic field
reaches hc2=1.52, the amplitude of the pairing potential van-
ishes or the LO state is completely compressed by the in-
plane magnetic field, and the system changes from the LO
state to the normal state. If we do the iteration from zero pair
potential, we will find that when h�hc2 the stable solution
for the pair potential is zero �normal state�. When h�hc2, the
stable solution is an LO state. There is no coexistence area of
the LO and the normal states in the h axis. Hence we con-
clude that the phase transition at hc2 for a fixed � is a
second-order phase transitoin. Our result is consistent with
previous studies.11,18,19

B. Phase boundary in h-T plane

In the Sec. III A 2, we study the phase transitions when
we vary the magnetic flux � or the in-plane magnetic field h.
The temperature is fixed at a very low value. Hence these
phase transitions can be regarded as quantum phase transi-
tions. In this section, we will study the phase transitions
induced by thermal fluctuations and determine their phase
boundaries. We will fix the magnetic flux � and vary the
temperature  or the in-plane magnetic field h. First we con-
sider the case in the absence of the magnetic flux �=0. We
fix the temperature at T=0.05, 0.10, 0.15, 0.20, and 0.25,
respectively, and do the iteration separately. The phase
boundary between the BCS and LO states is determined in a
similar way to that in Sec. III A. It can be seen that when we
fix the magnetic flux to be zero, and tune the in-plane mag-
netic field or the temperature, the system will change be-
tween the BCS, LO, and normal states. As can be seen from
Fig. 4�a�, the LO phase emerges below the critical tempera-
ture T�0.12. We note that the BCS to the LO state is first
order and the LO to normal is second order. When the mag-
netic flux is nonzero, the BCS state will be replaced by FF-
like state with the phase diagram, as shown in Fig. 4�b�, very
similar to the zero-flux case.

C. Mesoscopic effect

Another interesting question is the mesoscopic effect. In
this section we will study the mesoscopic effect by fixing the
temperature and decreasing the ring size. As mentioned in
the above discussion, the ring size N=50 already gives the
same phase boundary as that of N→�. A simple check is
that when we increase the ring size to N=100 and 200, we
find that the phase boundaries do not change in comparison
with that for N=50. This means that for the current model,
N=50 can be treated as in the thermodynamic limit. How-
ever, if we decrease the ring size, for example, to N=20, the
mesoscopic effect will occur. First, in the h-� plane, the LO
phase will shrink dramatically and the FF-like phase will
expand �see Fig. 5�a�	. This is because �1� the influence of
the magnetic flux on the system will increase and the influ-
ence of the in-plane Zeeman field will decrease relatively
and �2� having a finite size restricts the periodicity of the LO
OP. At a given Zeeman field, if the period is not commensu-
rate with the corresponding ring, solutions of the LO state
will have to be modified to be commensurate with system
size, which results in some energy cost. Therefore, the LO
state will shrink. Second, the periodicity of the magnetic flux
changes from �0 /2 to �0. This is because the system size is
so small that the Cooper pair can no longer be treated as a
whole and can only be treated as two separate electrons. We
show in Fig. 5�b� the phase boundary for N=10 and the
re-entrant behavior of various phases can be seen in the
phase diagram.

IV. DISCUSSION AND CONCLUSION

Based on a tight-binding model, we study a one-
dimensional s-wave superconducting ring subject to an in-
plane Zeeman field and a magnetic flux by solving the BdG
equation in real space. In the presence of a magnetic flux, a
crossover from the BCS state to the FF-like state is obtained
when the in-plane magnetic field is not very strong. If we
increase the strength of the in-plane magnetic field, the LO
state becomes favorable, and a FF-like to LO phase transi-
tion occurs. With the further increase in the in-plane mag-
netic field strength, the magnitude of the pair potential of the
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FIG. 3. �Color online� Phase diagram of the superconducting
ring in the h-� plane. Here the ring size is N=50 and the tempera-
ture is T=0.005. Notice that the boundary line between the FF-like
and LO phases has the periodicity in � with a period of �0 /2 while
that between the LO- and normal-state phases has the periodicity in
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FIG. 4. �Color online� Phase diagram of the superconducting
ring in the h-T plane. Here the ring size is N=50 and the magnetic
fluxes are �a� �=0 and �b� �=�0 /4, respectively. The LO-state to
normal-state transition �black with open circles� is of second order,
while the BCS-state �or FF-like� to the normal-state transition �red
with open squares� is of first order. The zero-field transition tem-
perature is around Tc=0.21 and 0.20 for �=0 and �0 /4,
respectively.
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LO state is suppressed and disappears finally with the system
entering the normal state. In the absence of the magnetic
flux, there is no FF-like phase, and the Zeeman field induces
the transitions between the BCS, LO, and normal states,
which has been studied extensively.18–27 Our results agree
well with the previous studies in a two-dimensional system
that the energetically favorable state for s-wave supercon-
ductor is a one-dimensional stripelike LO state. This sug-
gests the first-order transition between the BCS and LO
states while a second-order transition between the LO to nor-
mal states. Our study goes beyond that and indicates a stable
FF-like state due to the magnetic flux. The mesoscopic ef-
fects are also studied. When the system size decreases, two
mesoscopic effects arise: �1� the LO phase in the h-� plane
shrinks, and the FF-like state expands due to the enhance-
ment of the Aharanov-Bohm effect; �2� the periodicity of the
external magnetic flux will change from �0 /2 to �0.

The theoretical results predicted in this paper could pos-
sibly be verified by experiments. In a realistic experimental
setup, probably only one external field can be applied. In this
situation, the magnetic field orientation should be tuned with
respect to the plane, on which the ring lies, such that the
magnetic flux is varied while the exchange field remains
fixed. Therefore the setup is close to the problem under con-
sideration.

The following remarks are in order. �1� Though we study
a one-dimensional model, the system should not be regarded
as a mathematically one dimensional. The current study can
be easily extended to the two dimensional and other geom-

etry, such as a torus configuration threaded by a magnetic
flux. It can be expected that a similar phase transition be-
tween LO state and FF-like state will occur. �2� For the one-
dimensional case, the LO state exists in a broader range of
parameters space �h-T space, see Fig. 3� than that of two-
dimensional and three-dimensional cases,11,28,29 which makes
it easier to access experimentally. �3� In Ref. 30, it is re-
ported that a trap potential with arbitrary configuration can
be achieved. Hence, we expect that the result presented in
this paper should be able to be observed experimentally in
cold Fermions under current experiment technique. �4� In the
thermodynamic limit, N→�, the FF-like state reproduces the
BCS state, because the phase gradient of the OP is vanish-
ingly small. This result agrees with our intuition that when
the ring size becomes infinity, the influence of the magnetic
flux can be neglected. �5� If we change V from 2 to a smaller
number, e.g., V=1, we obtain qualitatively the same phase
diagram in the large N limit. Quantitatively, the normal-LO
and the LO-FF-like phase transitions lines will be lower in
the Zeeman field. �6� The effect of the impurity is not in-
cluded in the current study and will be given in our future
studies.
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FIG. 5. Phase diagram in the h-� plane. All the parameters are the same as that in Fig. 3 except that the ring size is �a� N=20 and �b�
N=10. The empty area represents the normal state. The gray area represents the FF-like state, and the area covered by the thin black lines
represents the LO state. The thick black lines represent the BCS state. It can be seen that with the decrease in the ring size, the FF-like phase
expand a lot and the LO phase shrink dramatically. The period of FF-like phase also changes from �0 /2 to �0.
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